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There is considered the diffraction problem for a plane WaVeguideWithelastiCWsllS. 
The boundary conditions yielding an identical mechanical mode OfthewaVeguidewallS 
and containing high order derivatives ars not made specific. The natural acoustic 
wave from the waveguide depth is the field source. Diffraction of this wave by an 
ideal screen with a height half the waveguide width is studied. The screen iS Con- 
sidered either absolutely rigid (Neumann condition), or absolutely soft (Didchlet 
condition). Solutions are constructed for the case when plates capable only of 
bending vibrations are the walls and the boundary-contact conditions needed for 
unique solvability of the problem /l/ ake selected here so that they describe the 
junction of the screen and one of the Plates, are constructed as examples. There 
is also obtained a solution for the case of impsdance conditions on the waveguide 
walls. A similar wave diffraction problem by a diaphragm in a waveguide with ideal 
walls (absolutely soft or absolutely rigid) but without matrix nature, is examined 
in /2/. 

1. Formulation of the problem. The acoustic field satisfies the homogeneous 
Helmholtz equation (Fig.11 

(~+~)~(~,~)=O, --<s<+=, --h<R<h (1.1) 

the boundary conditions on the walls 

&P[z,(--ip+*hl=O, -m<t<+Qo (1.2) 

and the Dirichlet orNeumanncondition on the screen 

within the waveguide. 

P(O,y)=O, --h<y<U (1.3) 

@(O*P) C-0, --h<y<O 
8% 

(1.4) 

Here k is the wave number in the medium, M,, HI are 
Polynomials of argumsnt -@ltiwhose coefficients depend 

Y on the mechanical parameters of the problem. We shall 

b consider the order 2n,. of the polynomial M, to be 
--__--_----- higher than the order 2n, of the polynomial M,. 
------- -- Let us present two examples of the realization of 

--------- -- the operators Le. 
_---------_t 

--_I-~ a_---_ 
In the imPedance case 

__--_---- 
+(--l)"f'rl (1.5) __---_----- L"=+ 

-tt 

I 
and theorders of the polynomials M$,&f, are zero. 

If plates capable of just bending vibrations arethe 
waveguide walls, then 

Fig.1 
&=(&$+++(-l)e+lv, v+, x*+ (1.6) 

Where P0.Q are, respectively, the fluid density and the surface density of the plate, D is 
the cylindrical plate stiffness, and 0 is.the frequency of vibration. The tires dependence 
of the wave processes is selected in the form @-w and will henceforth be omitted throughout. 
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Let us examine diffraction by a screen in a waveguide, of a normal pressure mode, sym- 
metric in y , and incident on the screen from the right half of the waveguide 

PO (x3 Y) = exp (---ih,x) ch ho, y), y = y (a) = r/h” - k2, y. = y (a,) 

The wave number h, of the normal mode is found from the condition that PO(z,y) satisfies 

the boundary conditions (1.2) 

LIP, (X,h) = 0 

Let Us note that PO(x,y) satisfies all the conditions of the problem except conditions 

(1.3) or (1.4) on the screen. The case when a normal mode anti-symmetric in y is the field 

source P,,(s, y) = exp (--ih,Y)sh(y,Y) is examined analogously. 

Partitioning the total field P(z, y) and Po(x, y) into even or odd parts in the coordin- 

ate x 

p (I? Y) = PS (x9 Y) + p, (x9 Y), p, (5, Y) = i/z IP (I, y) -t- P (--x, y)l, P, (z, y) = v2 [P (x, y) - P (-4, y)l 

we arrive at two independent problems in a semi-infinite waveguide. 
The conditions 

apg (0. Y) 
T-0, --h<Y<h (1.7) 

P,(O,y)=O, O<y<h, 
ap, (0, I/) 
T-0, --h<Y<O (1.8) 

are satisfied on the endface of this semi-infinite waveguide for x = 0, ly I<h in the case 

of an absolutely rigid screen in the waveguide. 
We have analogous conditions for the case of an absolutely soft screen 

Pa (0, Y) = 0, m-h < Y < h+ 
ap (0, br) 

--e_==O, O.<y<h, P,(O,y)=O, -h<y<O al 

If the order 2n,+ 1 of the boundary operator L, is greater than one, then for the solu- 
tion to be unique it is necessary to mention the boundary-contact conditions yielding the 
mechanical mode at the angular points of the semi-infinite waveguide. For the upper wall this 
condition is no mechanical defects in the waveguide wall, while for the lower it is the con- 
dition for fastening the diaphragm to the wall. The scattered field is constructedinconform- 

ity with the principle of limiting absorption, and should satisfy the Meixner condition "on 

an edge" /3/. In conformity with the method of solving boundary-contact problems taken in 14, 
5/, we will seek the solution for the even and odd field components P,(z, y),P,,(x, y) in x 
in the form of the sum of the particular solution R&y) of the inhomogeneous problem and 

the general solution Q(x,y) of the homogeneous problem. The function R(z, y)is found uniqu- 
ely from the requirement that at the angular points it have continuous derivatives of all the 
orders taking part in the boundary-contact conditions. 

The function Q(x,y)contains discontinuities in the total field derivatives at the points 
(0,&h) and describes the field diverging from these points /5/. 

2. Solution of the odd problem. tit us represent the particular solution Rw (z, Y) 

in the form 

R, (z, y) = Vs [P, (z, y) + (--l)aP, (--5, y)] + %o (zv Y) (2.1) 

Here and henceforth a = 1, throughout if 0 -c y < h, and a=2, if -h<y(O.We expand the 

unknown functions I&(5, y) in plane waves 

R&Y)=& 5 eiL% pas (h) ch (vu) + raa (V sh (YY)~ da 
-m 

(2.2) 

The boundary conditions will be satisfied on the endface (1.8) if oddnessofthe functions 

r1s (A)* r10 (h) and evenness of rzS (% r, (h) are required. Introducing the vector function 

( t is the sign of transposition), we write this condition 

r (h) = Er (-4) (2.3) 
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where E is a diagonal matrix with the elements uLI=~=---l, u,*=*=i. 
The boundary conditions (1.2) xesult in the integral equations (z>O) 

because of the continuity of the field &(x,p) and its normal derivative 
along the waveguide middle plane g = 0 has the integral equations (x > 0) 

f 
2ni +- cur h (a) s 

- t-t, (a)] dA = PO f-x, 0) 
-x. 

i 
-4-b 

sir s 
efky ] ru (a) - rr. (a)] dl. = 0 

---a 

Equations (2.4)-(2.6) will be satisfied identically if there is required 

G @Jr 0.1 = @+ (V + f (A) 

40.) w4 0 0 

; ; -oi "y 

0 0 - 4 m k%(V 

fw=&-Ilo,I,o,oll* 

a+ (IL) = II fib+ (a (P*+ my w (ah 'Pi+ iv II * 
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(2.4) 

(2.5) 

(2.6) 

(2.7) 

Here the ccsqonents of the vector function Ware analytic functions in the upper half-plane. 
bet us eliminate the unknown vector function r(k) by using (2.7), (2.31 and the relation- 

ship 
~7 (h)r (--a) = CD+ (-a) + f+ (--a) 

obtained from (2.7) by a formal replacement of B by -a. The components CD+ (--a) arefunctions 
analytic in the lower half-plane of the variable a um a< 0). 

We therefore arrive at a Riemann inhomogeneous matrix problem 

tp+ (a) = B (a)@+ (--a) + B (a)f (-a) - f (a) (2.8) 

B (a) = G (a)EG-l (a) 

-4 0 0 0 

B(h)= --liuaf 0 g (a] w, (a] 
- 711~ (a] 1 j g (a) 0 -_~p, (a) 

0 0 0 1 

to find a piecewise-analytic vector function @(a) by means of the linear relation connecting 
the limit values (im a-+0) of this function Q+ (+a) on the real axis of the variable A,. 
To solve the problera, we represent the matrix BQas the product of matrices &+&) and 
8,+(-a)), whose elements will be analytic functions e respectively, in the upper and lowerhalf- 
planes of a 

B (a) = BI+ (a)B,+ (a) (2.9) 
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The matrix elements axe defined on the basis of the following relationships: 

g(h) = g+ (Vfg (V, g+ (h) = g- (-h), g+ (fh) = 0 (Wz), I h I-+ -too 

‘yx+ (a) _I- yPx* (-h) = - g+ ($ (*) , Y”,+ (a) + Ye+ (-h) z..zz - - I 
s g’ (-- A) Is (A) 

The even function g(h) is mexomorphic, has a set of pairwise opposite simple zeroes and 
poles, and should be factorized, for instance, according to /3/: *1,%4+ (%I are the limitvalues 
(Im h + +0) of the piecewise-analytic functions %*a (k) 

Taking account of (2.91, we rewrite (2.81 in the form 

I&* (h)P@,+ (h> - v+(h) = B,+(--h)cD+(--h)+ P(4) (2.10) 

Here V+(h) is the value of the piecewise-analytic vectos function V(h) in the upper 
half-plane 

V(h)=+J Pa+ (-T)f(-- %I- [B,+(WfWI s 
-x) 

v+ (h)- I'+ (4,) L- B,+ (-h)f (-A) f [B1+ @)I-l f (I), Im k -+ 0 

Both sides of (2.10) determine the general vector function w (?4 = II 'ul PA lu, (a WQ @I, 

w4 @I II* analytic in the whole complex plane in accordance with the theorem on analytic continu- 
ation. By virtue of the required continuity of the derivatives of the particular solution 
R,(z, y), the functions 

Since the asymptoticm'+ (')' "+ (')' 
and wI(h), w4(h) besides, are zero. 

ipa+ (h) = 0 (h-l), mps+ (h) = 0 (h-l), 1 h I -+ + 00 

holds, then wa(h), wa(h) are also zero, i.e., the vector W(k) is zero. Taking this into ac- 
count we finally obtain from (2.10) and (2.7) 

r (a) - G-’ (A) IB+ (h)V+ (A) + f @)I 
(2.11) 

v+ (h) = II 0, %+ @I, us+ @I, 0 I * 

r,(I)+- e- 
I g+(--Wv,+W +(-W%+(a)%+(l)] 

ra&)=$- Y&_),) - &":, + (- Y'$&] 

-I-- 

u*+(%)=-& lim 5 
dr 

Irn b.+a _m tT+ (7) CT - w CT - v 

+m 

va+ (k) = - &,,1il& 5 
dz 

_m g+f--r) @--s)@--I) 

The general solution of the homogeneous problem Qa(x, y) which describes the field diver- 
ging from the points (O,&) will be sought in the form 

Qdw~=&+f- e* 1%~ &I ch &?I) + paa G+) sh fwfl ah (2.12) 

-m 

where we assume that the functions pas (h),qaa (A) have the same evenness as rG8 (h), r,, (k) (2.3) 

and are sought by analogousmeanswfth the sole difference that (2.7) is homogeneous. 
For continuity of the field in the neighborhood (0,&h) it is sufficient to require the 

following estimates as Ia I-+00: 

th (h) = 0 (a-l-9, gm (a) = 0 (a-~-~), 0~ E~,~< vz (2.13) 

Taking account of (2.12), the vector function W(h), defined here by an equation of the type 
(2.101, has the form 
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where s,(k), s,,(k) are polyncmials of degrees a, n - 1, where S,(A) is a polynanial in 0da 
powers of L, as is seen fran (2.7), and &r(L) in evan powers, and s=max[O,&- 11. The 
coefficients of these polynomials are later determined from the boundary-contact conditions. 
The final expressions for h(%b qm(k) are these: 

3. Solution of the even problem. The particular solution of the inhcmogeneous pro- 
blem satisfying the relationships (Ll), (1.21, (1.61, and smooth with all its derivatives at 
the points (O,j&), has the form 

ROB (% y) = Y, IP, (% br) + p, (-x, II)1 (3.1) 

we write the general solution of the homogeneous problem in the form 

T&,&J e'& It, 0.) ch (VY) + ta 0.1 sh hy)l da 
-co 

requiring evenness of the functions h(k), ts(S& that are theamplitudesof the vibrations, res- 
pectively synmetrfcal and antisymmetrical in J, for the relations (1.6) to be satisfied 
identically. 

The boundary conditions (1.2) for T,(z,y) result in the integral eguations 

M,(*,Y)=& 1 e -I-- U”[(-l)“t~(~)Z,(X)ft~(h)Z,(A)1d~1.0 
-0D 

The system (3.2) will be satlsfied if 

(3.2) 

ti (W. 0") = w+ (% 4 (Wa (11) = (ps+ (11) 

where, as before, ql,,+(h) is a function analytic in the upper half-plane of the variable L, 
Taking account of the evennessof t,(h), t.(k)), we obtain 

gl,%+ (k) = 'piVS+ (44, ImA = 0 

Bence, taking account of the continuity of the field at the points (O,fh), bythetheorem 
on analytic continuation through a contour we have that (~~,~(k,) is a polynomial in even powers 
of k of order n- 1, n= max [0,2nl- 
finally obtain 

$1. We denote these polynomials by y(k), u,(k), and we 

4 (A) = u, (V/ 4 (V, 4l (A) = u, (A)/ 2, (k) 

where the %a, coefficients of these polyncmials are determined from the boundary-contact con- 
ditions. 

4. Boundary-contact conditions. If impedance boundary conditions are satisfied on 
the waveguide walls, i.e., Le is the operator (1.51,tben n,= 
S,,(A) are identically zero 

0, the polyncmials Yr@))-8kQI SnW, 

and (2.1). 
, and the solution of the problem is given by (3.1), (2.11), (2.2) 

Were, let L, be the operator (1.6) R then n, - 2, end the four coefficients for 
the field Q,,(=,&, as much as for the field T. (=,v), must be determined. 

The condition of no defects on the plate at 
plate v-+L: 

== 0 /6/ should be satisfied on the upper 
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apt-4 h) = apt+o, h) 

aY au 
av t-0, h) = a*p (+ 0, h) 

ay dz ay a2 
m t-0, h) = av t+ 0, h) 

ay as ay as 
alp (-0, h) =@P(fO,h) 

ay a9 ay as= 

We have on the lower plate from the equation of diaphragm motion /7/ 

ap(=to, -h)=. 
aY 

*P(*o,--) =O 
ay az 

CJL.1, 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Let us require compliance with conditions (4.1)- (4.5) for the r-symmetric and z-anti- 
symmetric problems separately. 

Conditions (4.2) and (4.4) are satisfied identically for the field Ro.(z,~)+Q~(s,y) be- 
cause of the evenness of t,(h),t,(I), and conditions (4.1) and (4.3) have the form 

+f c+~~ y5”[t, (l)sh(yh)+ t,(h)ch (yh)] dl= +f c-‘O’ ykn [t. (A.) sh (yh) + t, (A) ch (.@)I dA = 0, n = o,2 (4.6) 
-_ -ca 

Here we used the notation /6/ 

Conditions (4.5) reduce to the equations 

+a 
J #+@A I'[--~@) ak (yh)+ t,(A) ck W)ldh = 2nhbh (GO 

-9 

+f e+ML yl* [- t, (1) sh (yh) + ta (h) ch (yh)] dh = +f ZML yLz [-tli (A) sh (yh) + I, (k) ch (yh)] d)i = 0 
-_ -m 

Writing the explicit form of the polynomials u* (h)> % (A) 

P* (h) = a + bhe, ug (A) = c + dk* 

(4.7) 

and substituting them into (4.6) and (4.7), we obtain the system 

aIo,+bI,,+cioa+dI,,=O, aI,,+bZ4s+clz,+dZ,=0 (4.8) 

- aI, - bIs8 + cIoo + dI, = 2rciyo sh (y&); - alp, - bI,, j-19, + dI, = 0 

to determine the boundary-contact constants a, b,c,d. The coefficients of the system (denoted 

by Im.1,) have the form 

For n=0.2 the integrals I,,.I, converge in the ordinary sense. 
Closing the contour (-co,+-) in the upper half-plane, we obtain 

For a fixed frequency o only a finite number of modes being propagated exist in the 

waveguide. The damping modes have the asymptotic &,,= O(N) and the series converge. 

The coefficient 14, can be represented in the form 

+- +- +- 
1 

Xi s ,+ioh yp & (yh) dh = 1 
1, (A) ,2xi s e+*’ dh + & 

s 

,+ioh. (w’sh “:‘,” ch (yh)] dh 
I 

..-m -m -m 
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Upon closure in the upper half-plane, we obtain 

113 

The boundary-contact 
ogously. 

be= - %9-Lysh(yh)--vCh wo c -1 1: (A) I, 
conditions for the X-antisy5uetric part of the field are examined anal- 
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